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ABSTRACT
We present a framework for non-mediated bilateral multi-
issue negotiation under non-monotonic preference spaces.
The framework is based on a region-based recursive bar-
gaining mechanism. Preliminary experimental evaluation
shows that our approach may obtain approximate Pareto-
optimal results in acceptable negotiation time with a low
failure rate.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—multia-
gent systems

General Terms
Algorithms, Performance, Experimentation

Keywords
automated negotiation, multi-issue, non-monotonic

1. INTRODUCTION
We seek to address the challenges of issue interdependen-

cies in negotiation, which yield intractably large contract
spaces and utility functions with multiple local optima. In
the existing research, nearly all the models which assume
issue interdependencies rely on monotonic utility spaces, bi-
nary valued issues or low-order dependencies [1, 2]. We pro-
pose a novel generic framework for non-mediated two-agent
automated negotiations, which is able to operate in complex
non-monotonic utility spaces. It is based on the exchange of
offers, defined as regions of the negotiation space. The joint
exploration of the solution space is recursive, which means
that, when agents agree on a given region, a new negotia-
tion on lower-sized regions is performed within the agreed
region. If a new agreement cannot be found, agents return
to upper level regions to perform a new search. Prelimi-
nary experimental evaluation shows that the proposed ne-
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gotiation framework achieves in approximate Pareto-optimal
outcomes obtained in reasonable times.

2. NEGOTIATION FRAMEWORK

2.1 Preference Structure
Let X = {xi|i = 1, . . . , n} be the issues under negotia-

tion, where each issue xi can be normalized to a continuous
or discrete range di, and s = {xs

i |i = 1, . . . , n} a contract
defined by the issues’ values. A region will be formed by
the set of contracts lying within the hypersphere defined as
a 2-tuple R =< c, r >, where c ∈ D and r ∈ R define
the center and the radius. Each agent Ai∈{b,s} embeds a
utility function Ui : D → R, which can be non-monotonic
and non-differentiable. We define the overall satisfaction de-
gree (OSD) of R as an estimate of its overall utility. Let
{sk ∈ D|k = 1, . . . , nsc} be a set of nsc uniformly dis-
tributed sample contracts in R, uth ∈ [0, 1] the reservation
value for any contract, and l the number of acceptable con-
tracts which satisfy Ui(sk) ≥ uth, then OSD(R, uth) = l

nsc
.

2.2 Negotiation Protocol
Our negotiation protocol is formalized as a negotiation di-

alogue composed of a sequence of bargaining threads (BTHs):
Nd = {bt0

ri1 → bt1
ri2 → . . .}. Each BTH

btn
rim

= {(Rb, Rs)
tn
rim

→ (resb, ress)
tn+1
rim

→ . . .

→ (Rb, Rs)
tn+1−2
rim → (resb, ress)

tn+1−1
rim }

is a sequential exchange of offers (regions) of size rim and re-
sponses to the offers. (Rb, Rs)

tn+a
rim

represents the simultane-

ous exchange of offers of size rim, and (resb, ress)
tn+a+1
rim

the
responses to these offers. The dialogue admits three types of
responses: Accept, Reject, and Request. Before the beginning
of a negotiation dialogue agents agree on an ordered finite
set of region sizes RS = {ri|i = 1, . . . , m; ∀l < k, rl > rk},
and on the number of possible BTHs of a given size. The
rm parameter represents the lowest region size and r1 the
highest region size. A negotiation starts with a BTH of size
r1, the goal of the agents being to reach an agreement on
a region of size rm. It is worth noting that rm → 0 rep-
resents a contract. Every time a region (offer) is accepted
by the opponent, the current BTH ends, and negotiation
moves towards a new thread of lower size. The search in
the new thread is restricted by the domain of the reached
agreement in the previous thread. However, if agents abort
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the dialogue in the current thread because of the impos-
sibility of reaching an agreement, they return to negotiate
regions of a higher size. This process may be seen as a search
tree, which structures the joint exploration of the negotia-
tion space. The acceptability of regions and offers and the
unfeasibility of agreements in a bargaining thread govern the
transitions between the different threads.

2.3 Responding and Proposing Mechanisms
The responding mechanism depends on acceptance (athrim)

and quality (qthrim) thresholds. Each agent individually
and privately defines the thresholds for each region size:
ATHi = {athi

r1 , athi
r2 , . . . , athi

rm
}, QTHi = { qthi

r1 , qthi
r2 ,

. . . , qthi
rm

}. The responsive strategy for agent Ab will be
(for As the strategy is similar):

8
>>><

>>>:

Accept OSD((Rs)
tn+a
rim

, uth) ≥ athb
rim

MovementRequest OSD((Rs)
tn+a
rim

, uth) < athb
rim

AND

OSD((Rs)
tn+a
qrim

− (Rs)
tn+a
rim

) ≥ qthb
rim

Reject Otherwise

If the offer is accepted, the current BTH ends. If the op-
ponent’s offer is not accepted, then the agent evaluates its
quality by computing the OSD of the surroundings of the of-
fer. If the OSD is higher than qthrim then the agent responds
with a message containing a request for offer movement; oth-
erwise, the agent rejects the opponent’s offer. The request
for offer movement is defined as a vector v̄q

(Rs)
tn+a
rim

which

indicates the preferred direction expressed for an agent for
the movement of (Rs)

tn+a
rim

. In order to obtain v̄q, we use
the center of mass of the filtered samples (those above the
utility threshold uth) taken in the computation of the OSD
for the surroundings of the opponent’s offer.

The proposing mechanism is based on three basic mecha-
nisms by which an agent generates regions: 1) Root Region
Mechanism, Ab applies simulated annealing to her utility
function to find a local maximum stn+a, and generates the
region (Rb)

tn+a
rim

=< stn+a, rim >; 2) Directed Child Re-

gion Mechanism, Ab generates a child region (Rb)
tn+a+2
rim

=<

stn+a+2, rim >, where stn+a+2 = stn+a+2∗rim∗v̄q
(Rb)

tn+a
rim

;

3) Random Child Region Mechanism, Ab generates a child
region (Rb)

tn+a+2
rim

=< stn+a+2, rim >, where stn+a+2 =

stn+a + 2 ∗ rim ∗ v̄qrandom. The child region is generated on
a random direction from the center of the parent region.

To prepare any offer, an agent generates a region (Ri)rim

by means of any of the three mechanisms described above,
and then evaluates if its OSD is above the acceptance thresh-
old athrim . The rules which govern the generation of offers
within a BTH are: 1) The first region in a BTH is always
a root region; 2) Any unacceptable region is discarded and
then a new search is performed for finding a new region. If
the discarded region is a root, the agent searches for a root
region; otherwise, the agent generates a random child region;
3) The rejection by the opponent of an offer implies that the
agent moves to the rejected offer’s parent, and then searches
for a new random child region; 4) An agent tries to generate
a directed child region upon the reception of a movement
request ; 5) The number of negotiation rounds within a BTH
is bounded. If this limit is reached, the BTH is considered
unfeasible; 6) The opponent’s acceptance of a previous offer
implies the end of the current BTH, which in turns implies

a final agreement or the beginning of a new BTH of lower
size.

3. CONCLUSIONS
We have followed a sequential evaluation of parameters.

For each evaluation we used the best configuration obtained
in the previous parameter analysis. In the setting we study,
we considered two agents bargaining on three issues, and
simulated the non-monotonic preference scenario with an
aggregation of Bell functions. This type of functions are
usually used in the construction of landscapes for the per-
formance evaluation of evolutionary optimizers.

The experimental results show that the generation of root
regions plays an important role in the quality of the solu-
tions. It is expected that an agent can obtain better agree-
ments if she searches for better local optima when generat-
ing root offers. However, if the agent is too precise in the
search, the probability of getting stuck in a restricted set
of local optima or in a global optimum which comprises a
zone of no agreement may increase. We analyzed this issue
by performing experiments with two different values for the
maximum number of iterations in the optimization process
which generates the root region centers. From the results
we conclude that there are two main advantages of using
very few iterations: the negotiation times are considerably
reduced at a minimum cost in terms of optimality, and the
probability of negotiation failure decreases.

To investigate the influence of the highest-sized region,
we varied the configuration of the region r1 from 2% to 60%
(with respect to the issues’ domain length), for a fixed search
depth m = 15. The best results in terms of negotiation time
and optimality were obtained for r1 = 40%. Regarding the
acceptance threshold, the experiments show that the results
improve when the agent starts searching with low accep-
tance thresholds, and progressively increases the thresholds
for lower sized regions. It was also expected that the dis-
tribution of region sizes had an influence on the outcomes.
We tested several distributions of region sizes, obtaining the
best results for an equispaced distribution.

Finally, we conducted several experiments in which the
distribution of quality thresholds varied. The aim was to
evaluate the usefulness and performance of the quality mea-
sure mechanism. From the results we conclude that the
quality evaluation mechanism may contribute to a signifi-
cant improvement in the negotiation results when using a
constant quality threshold and this threshold is not exces-
sively low.
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